FLIGHT DYNAMICS SYSTEM API

User Manual V1.6.3.

Published: April 2025

For additional support, please contact us at support@digantara.co.in

DIGAXTARA

Table of Contents

Sl. No.	Description	Page No.
1	Introduction	4
2	Authentication	5
3	Orbit Propagation	6
4	GNSS Orbit State Converter	14
5	Conjunction Screening and Assessment	16
6	CDM Manager	20
7	Collision Avoidance Maneuver	29
8	GEO East-West Station Keeping Maneuver	41
9	GEO North-South Station Keeping Maneuver	43
10	GEO Combined Station Keeping Maneuver	45
11	High Accuracy Pass Prediction	47
12	Satellite Search Mode	49
13	First Contact Assistance	52
14	API Usage Guide	62

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

Document Version History

Sl. No.	Document Version	Revision Date	Revision Description
1	1.1	06/11/2024	1. Initial release
2	1.2	09/12/2024	1. Separate API end-points for ConjA and CAM
3	1.3	06/01/2025	 FCA input latitude and longitude datatype changed from string to float Addition of GNSS Orbit State Converter API end-point
4	1.4	13/01/2025	 Change in International Designator format in EPIC, GNSS & FCA end-points Addition of Satellite Search Mode API end-point
5	1.5.1	23/01/2025	 Addition of GEO East-West & North-South Station Keeping maneuver design API end-point Input changes in ConjA
6	1.5.2	29/01/2025	1. Input changes in CAM and SSM.
7	1.5.2.1	04/02/2025	1. Default value changes in ConjA
8	1.5.3	06/02/2025	1. Code optimisation in NSSK and EWSK.
9	1.5.4	21/02/2025	1. Input changes in ConjA and CAM.
10	1.6.1	17/03/2025	1. Addition of GEO Combined Station Keeping maneuver design API end-point
11	1.6.2	02/04/2025	1. Update in ConjA with optional input as primary ephemeris
12	1.6.3	25/04/2025	 Addition of CDM manager API end-point Addition of ConjA scheduler API end-point

DIGANTARA

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

1. Introduction

Digantara's Flight Dynamics System (FDS) API—is designed to empower you with precise, real-time flight dynamics capabilities to mitigate collision risks and ensure smooth operations in orbit.

The FDS API offers capabilities for:

- **Orbit Propagation:** Accurately track and predict the positions of RSOs up to 14 days in advance.
- **High Accuracy Pass Prediction:** Precisely forecast satellite passes over ground stations.
- **Conjunction Assessment and Screening:** Continuously screen for collision risks, providing timely alerts and detailed risk assessments.
- **Manoeuvre Design:** Design optimal maneuvers for collision avoidance, tailored to mission-specific constraints.
- **First Contact Assistance:** Generate initial orbital predictions and pass predictions for newly launched satellites, supporting early-stage tracking.

Key Benefits:

- Unified Platform: Combines essential tools, simplifying workflows and eliminating the need for multiple systems.
- **Real-Time Insights:** Supports confident decision-making with high-speed data processing.
- Seamless Integration: Integrates easily into existing systems, breaking down data silos.
- Scalability and Efficiency: Scales to meet mission needs and offloads heavy computations, optimizing resources.

Whether you're managing a satellite constellation, planning missions, or conducting space exploration and scientific research, with FDS- you can rely on advanced analytics for safer, more efficient orbital operations.

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

This document is for the sole use of the intended recipient(s) and contains confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited.

2. Authentication

To access the API, you must include an authentication token in the request headers as shown below. The token can be obtained either by registering at <u>fds.digantara.co</u> or by contacting <u>sales@digantara.com</u>.

Example Header

Bearer <your-token>

Replace *<your-token>* with the actual token provided, where *Bearer* has to be mentioned as prefix. The authorization header can also be set under the Authentication section as shown below.

Steps to update Authentication token on web application

- 1. Click on Authentication tab on homepage
- 2. Input Authentication token with proper format

AUTHENTICATION 1 API key applied	CLEAR ALL API KEYS
API Key (Authorization) Key Applied REMOVE Please input Bearer <token> to properly configure the API Key. Send Authorization in header api-token UPDATE Input Token</token>	

3. Click on UPDATE to save Authentication token

AUTHENTICATION 1 API key applied	CLEAR ALL API KEYS
API Key (Authorization) Key Applied REMOVE Please input Bearer <token></token> to properly configure the API Key. Send Authorization in header	
Bearer your_TOKEN UPDATE Click on Update	

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

3. Orbit Propagation (EPIC)

To initiate an orbit propagation job, navigate to "*POST/epic*" under the Orbit Propagation tab where the required orbit propagation parameters are passed in a *JSON* format, described under Request Body. The response will return a unique request ID, which shall be used to retrieve the result using *GET* request.

API End-point

https://fds.digantara.co/#post-/epic

Field Descriptions & Limitations:

1. Object Parameters

Field	Datatype	Description	Constraints	Default choice	Optional
name	string	Object Identifier	Any string allowed	-	No
id	string	International Designator unique object identifier used in OEM and TLE files.	See ID format section below	-	No
norad_id	string	NORAD catalog identifier	Any string allowed	-	No
position_km	object	Initial J2000/EME2000 position components (in km)	Magnitude of (x,y,z) must be > 6478.137 km	-	No
└─x, └─y, └─z	float	The position components in km	-	-	No

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

velocity_kmps	object	Initial J2000/EME2000 velocity components (in kilometers per second)	-	-	No
└─x_dot, └─y_dot, └─z_dot	float	The velocity components in kilometers per second	-	-	No
mass_kg	float	Mass of the object (in kg)	Valid range: [1, 100000] kg	1 kg	Yes
<pre>cross_section_ar ea_m2</pre>	float	Cross-sectional area of the object (in square meters)	Valid range: [0.0001, 1000] m ²	1 m ²	Yes
drag_coefficient	float	The drag coefficient (dimensionless)	Valid range: > 0	2.2	Yes
<pre>reflectivity_coe fficient</pre>	float	Reflectivity coefficient for solar radiation pressure	Valid range:[1, 2]	1.1	Yes

id format (International Designator):

For OEM & TLE, the identifier has the format YYYY-NNNPPP, where:

- YYYY: Year of launch,
- NNN: Three-digit serial number indicating the launch number in that year.
- PPP: Part specifier (1 to 3 alphabets in capital letters) indicating the part of the object placed in orbit during the launch

2. Covariance Matrix (ECI_J2000)

Field Datatype	Description	Constraints	Default choice	Optional
----------------	-------------	-------------	-------------------	----------

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

<pre>cov_diag_pos_xu _km2</pre>	float	Variance of the position X in km ²	Valid range: ≥ 0	0	Yes
<pre>cov_diag_pos_yv _km</pre>	float	Variance of the position Y in km ²	Valid range: ≥ 0	0	Yes
<pre>cov_diag_pos_zw _km2</pre>	float	Variance of the position Z in km ²	Valid range: ≥ 0	0	Yes
<pre>cov_diag_vel_xu _km2ps2</pre>	float	Variance of velocity X in (km/s) ²	Valid range: ≥ 0	0	Yes
<pre>cov_diag_vel_yv _km2ps2</pre>	float	Variance of velocity Y in (km/s) ²	Valid range: ≥ 0	0	Yes
<pre>cov_diag_vel_zw _km2ps2</pre>	float	Variance of velocity Z in (km/s) ²	Valid range: ≥ 0	0	Yes
off-diagonal elements	float	Covariance matrix off-diagonal elements	•	0	Yes

3. Propagation Settings

Field	Datatype	Description	Constraints	Default choice	Optional
<pre>start_time</pre>	datetime	Propagation start time	ISO 8601 format: "YYYY-MM-D DThh:mm:ss.sss "	-	No
end_time	datetime	Propagation end time	ISO 8601 format: "YYYY-MM-D DThh:mm:ss.sss "		No
<pre>step_size_sec</pre>	integer	The step size for propagation, in seconds	Valid range: [1, 86400] seconds	60 seconds	No

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

geopotential_mo del	integer	Geopotential model for Earth's perturbation	Values: 1=EGM96, 2=EGM2008, 3=EIGEN-GL04 C	3	Yes
geopotential	integer	Degree of the Earth's geopotential perturbations	Valid range: [0 to 360]	70	Yes
atmospheric_mod el	integer	Atmospheric model used	Values: 1=Exponential, 2=NRLMSISE-0 0	2	Yes
sun gravity	boolean	Sun gravity perturbation	true/false	true	Yes
moon gravity	boolean	Moon gravity perturbation	true/false	true	Yes
solid_earth_tid es	boolean	Solid Earth tides perturbation	true/false	true	Yes
ocean_tides	boolean	Ocean tides perturbation	true/false	true	Yes
solar_radiation _pressure	boolean	Solar radiation pressure perturbation	true/false	true	Yes
earth_albedo	boolean	Earth albedo perturbation	true/false	true	Yes

Covariance-related propagation settings:

Field	Datatype	Description	Constraints	Default choice	Optional
<pre>cov_prop_switch</pre>	boolean	Enable covariance propagation	true/false	false	Yes

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

<pre>cov_deg_of_geop otential</pre>	integer	Geopotential degree for covariance propagation	Valid range: [0 to 360]	4	Yes
cov_atm_drag	boolean	Atmospheric drag for covariance propagation	true/false	false	Yes
<pre>cov_pert_sun. cov_pert_moon</pre>	boolean	Luni-Solar perturbation for covariance propagation	true/false	false	Yes
cov_pert_srp	boolean	Solar radiation pressure for covariance propagation	true/false	false	Yes
Ephem_integ_abs tol	float	Absolute integrator tolerance	Valid range: >0	1e-11	Yes
Ephem_integ_rel tol	float	Relative integrator tolerance	Valid range: >0	1e-10	Yes

4. Maneuvers

Field	Datatype	Description	Constraints	Default choice	Optional
maneuvers_uvw	object	List of maneuvers applied to the object		-	Yes
└─ start_time	datetime	The time when the maneuver begins	All times should be specified in ISO 8601 format. Format: "YYYY-MM-DDTh h:mm:ss.sss"	-	No*

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

L duration_sec	float	The duration of the maneuver in seconds	e e	-	No*
└ acceleration_km ps2	object	Acceleration components in UVW frame, in kilometers per second squared.	-	-	No
└─ acc_u	float	U component acceleration	-	-	No*
└─ acc_v	float	V component acceleration	-		No*
└─ acc_w	float	W component acceleration	-	-	No*
└─ eff	float	Efficiency factor for the commanded thrust	Valid range [0, 1.0]	1.0	Yes

* Required only if maneuvers_uvw object is included

5. TLE Generation

Field	Datatype	Description	Constraints	Default choice	Optional
generate_tle	boolean	Option to generate a TLE from the ephemeris	true/false	false	Yes

Request Example

{
 "covariance_ECI_J2000": {
 "cov_diag_pos_xu_km2": 10000,
 "cov_diag_pos_yv_km2": 10000,
 "cov_diag_pos_zw_km2": 10

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in


```
"cov_diag_vel_xu_km2ps2": 0.01,
    "cov_diag_vel_yv_km2ps2": 0.01,
    "cov_diag_vel_zw_km2ps2": 0.01,
    "cov_offdiag_km2ps2": {
    "cov offdiag_21": 0,
    "cov_offdiag_31": 0,
    "cov_offdiag_32": 0,
    "cov_offdiag_41": 0,
    "cov_offdiag_42": 0,
    "cov_offdiag_43": 0,
    "cov_offdiag_51": 0,
    "cov offdiag 52": 0,
    "cov offdiag 53": 0,
    "cov_offdiag_54": 0,
    "cov_offdiag_61": 0,
    "cov offdiag 62": 0,
    "cov offdiag 63": 0,
    "cov_offdiag_64": 0,
    "cov offdiag 65": 0
    }
},
"maneuvers_uvw": [
    {
    "acceleration_kmps2": {
    "acc u": 0,
    "acc_v": 0,
    "acc_w": 0
    },
    "duration sec": 0,
    "eff": 0,
    "start_time": "2023-08-04T01:00:00"
    }
],
"object": {
    "cross_section_area_m2": 0.0452389342,
    "drag_coefficient": 2.2,
    "id": "2012DA14",
    "mass_kg": 23.28,
    "name": "LARETS",
    "norad id": "27944",
    "position_km": {
    "x": 1166.3832041214,
    "y": -569.998057629246,
    "z": -6939.59483659417
    },
    "reflectivity coefficient": 1.2,
    "velocity kmps": {
```

DIGAMTARA

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

DIGAMTARA

```
"x_dot": 1.69394028376941,
    "y_dot": -7.26108827784564,
    "z_dot": 0.880941038701065
    }
},
"propagation_settings": {
    "atmospheric_drag": true,
    "atmospheric_model": 2,
     "cov_atm_drag": false,
    "cov_deg_of_geopotential": 4,
    "cov_pert_moon": false,
    "cov_pert_srp": false,
    "cov_pert_sun": false,
     "cov_prop_switch": false,
    "earth_albedo": true,
    "end time": "2023-06-01T00:00:00.000",
    "ephem_integ_abstol": 1e-11,
    "ephem_integ_reltol": 1e-10,
    "geopotential": 70,
    "geopotential model": 3,
    "moon_gravity": true,
    "ocean_tides": true,
    "solar_radiation_pressure": true,
     "solid_earth_tides": true,
    "start time": "2023-05-31T00:00:00.000",
    "step_size_sec": 60,
    "sun_gravity": true
```

}

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

4. GNSS Orbit State Converter (GNSS)

This API endpoint is used to convert a GNSS ephemerides dataset into a Two-Line Element (TLE). Given a list of ephemerides (two or more must be provided), this API returns a TLE.

API End-point:

https://fds.digantara.co/#post-/gnss

Field	Datatype	Description	Constraints	Default choice	Optional
INTLDES	string	International designator	-	75010A	No
NORAD_ID	string	NORAD CAT ID of the satellite	-	07646	No
<pre>ephem_input</pre>	list	List of ephemeris with epoch, position and velocity	-	-	No
<pre>position_J2000 _km</pre>	object	Position of satellite in J2000 frame of reference in kilometers	-	-	No
└─x └─y └─z	float	Position components in kilometers	-	-	No
velocity_J2000 _kmps	object	Velocity of satellite in J2000 frame of reference in kilometers per second	-	-	No
└─x_dot └─y_dot └─z_dot	float	Velocity components in kilometers per second	-	-	No
time_UTC	datetime	Epoch of corresponding position and velocity in UTC format	ISO 8601 format: "YYYY-MM-D DThh:mm:ss.sss"	-	No

Field Descriptions & Limitations:

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

INTLDES format:

For OEM & TLE, the identifier has the format YYYY-NNNPPP, where:

- YYYY: Year of launch,
- NNN: Three-digit serial number indicating the launch number in that year.
- PPP: Part specifier (1 to 3 alphabets in capital letters) indicating the part of the object placed in orbit during the launch

Request Example

```
{
  "INTLDES": "75010A",
  "NORAD ID": "07646",
  "ephem_input": [
      {
      "position_J2000_km": {
      "x": 1166.3832041214,
      "y": -569.998057629246,
      "z": -6939.59483659417
      },
      "time_UTC": "2024-09-23T00:00:00.000",
      "velocity_J2000_kmps": {
      "x_dot": 1.69394028376941,
      "y dot": -7.26108827784564,
      "z dot": 0.880941038701065
      },
      {
      "position_J2000_km": {
      "x": 116.3832041214,
      "y": -599.998057629246,
      "z": -6836.59483659417
      },
      "time UTC": "2024-09-23T00:10:00.000",
      "velocity_J2000_kmps": {
      "x_dot": 0.69394028376941,
      "y_dot": -7.46108827784564,
      "z dot": 1.280941038701065
      }
      }
  ]
}
```

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

5. Conjunction Screening and Assessment (ConjA)

This API endpoint is used for the conjunction assessment between a primary object (satellite) and secondary objects based on provided NORAD IDs or by default with the entire Catalogue. It calculates the Distance of Closest Approach (DCA), Time of Closest Approach (TCA), the Probability of collision (Pc) and Digantara's proprietary confidence metric specifying the reliability of data and the risk associated with the predicted conjunction.

API End-point:

https://fds.digantara.co/#post-/conja

Field Descriptions & Limitations:

Field	Datatype	Description	Constraints	Default choice	Optional
primary_norad_ id	integer	The NORAD ID of the primary object for which the conjunction analysis is being performed.	-	55161	No
analysis_durat ion_days	integer	The number of days over which the conjunction analysis will be carried out	Minimum: 1, Maximum: 7	5	No
pc_method	enum	The method used to calculate the probability of collision.	Allowed: ALFANO-2005, ALFANO-MAX- PROBABILITY, CHAN-1997, FOSTER-1992, ELROD-2019	FOSTER -1992	No
primary_object _span_m	float	Primary object span (maximum dimension) in meters	Minimum: 0.01, Maximum: 100	0.5	Yes
primary_volume _params	object	Screening volume for the primary satellite	-	-	No

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

radial_thresho ld_km	float	Radial screening threshold in kilometres	Minimum: 0.01, Maximum: 100	0.4	No
alongtrack_thr eshold_km	float	Alongtrack screening threshold in kilometres	Minimum: 0.01, Maximum: 100	44	No
<pre>crosstrack_thr eshold_km</pre>	float	Crosstrack screening threshold in kilometres	Minimum: 0.01, Maximum: 100	51	No
primary_volume _params	object	Screening volume for the primary satellite	-	-	No
radial_thresho ld_km	float	Radial screening threshold in kilometres	Minimum: 0.01, Maximum: 100	0.4	No
alongtrack_thr eshold_km	float	Alongtrack screening threshold in kilometres	Minimum: 0.01, Maximum: 100	44	No
<pre>crosstrack_thr eshold_km</pre>	float	Crosstrack screening threshold in kilometres	Minimum: 0.01, Maximum: 100	51	No
secondary_nora d_ids	[integer]	A list of secondary object NORAD IDs to screen for conjunction	List of NORAD IDs	[25544]	Yes
primary_ephem_ input	list	List of ephemeris with epoch, position and velocity	-	-	Yes
position_J2000 _km	object	Position of satellite in J2000 frame of reference in kilometers	-	_	Yes
└─x └─y └─z	float	Position components in kilometers	-	-	Yes

velocity_J2000 _kmps	object	Velocity of satellite in J2000 frame of reference in kilometers per second	-	-	Yes
└─x_dot └─y_dot └─z_dot	float	Velocity components in kilometers per second	-	-	Yes
time_UTC	datetime	Epoch of corresponding position and velocity in UTC format	ISO 8601 format: "YYYY-MM-D DThh:mm:ss.sss"	-	Yes

Request Example

1. For entire catalogue analysis

```
{
  "analysis_duration_days": 5,
  "pc_method": "FOSTER-1992",
  "primary_norad_id": 55161,
  "primary_object_span_m": 0.5,
  "primary_volume_params": {
      "alongtrack_threshold": 20,
      "crosstrack_threshold": 10,
      "radial threshold": 2
  },
  "secondary norad ids": [
      25544
  ],
  "secondary_volume_params": {
      "alongtrack_threshold": 20,
      "crosstrack threshold": 10,
      "radial threshold": 2
  }
}
```

2. For specific secondary object analysis

```
{
    "analysis_duration_days": 5,
    "pc_method": "FOSTER-1992",
    "primary_norad_id": 55161,
    "primary_object_span_m": 0.5,
    "primary_volume_params": {
```

DIGAMTARA

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in


```
"alongtrack_threshold": 20,
    "crosstrack_threshold": 10,
    "radial_threshold": 2
},
"secondary_volume_params": {
    "alongtrack_threshold": 20,
    "crosstrack_threshold": 10,
    "radial_threshold": 2
}
```

Recommendation on providing primary ephemeris: When providing the primary ephemeris, the number of ephemerides must exceed 100, with each time step between 2 and 15 minutes. The initial epoch must not start more than one day before the analysis date, nor extend beyond six days after the analysis date.

Note:

- 1. If the request has to be created with Digantara's multi-modal data then please remove the primary_ephem_input key completely from the input body.
- 2. If the primary object does not have conjunction data, the API will return an empty CSV files of the conjunction report.

Scheduler for Conjunction Screening & Assessment

This is a new feature in the Conjunction screening and assessment module, where you can create recurring Cron jobs for conjunction analysis. This endpoint accepts ConjA parameters and returns a unique schedule ID upon successful creation. Recurring ConjA jobs will run after a fixed interval_seconds given while creation of the schedule.

You can view and monitor all scheduled jobs through the API available at https://fds.digantara.dev/#get-/schedules. The response includes:

- schedule_id (integer): The unique identifier for each schedule.
- request_id (string): The ID associated with the Cron request.
- next_run_at (string): The next scheduled run time.
- last_run_at (string): The last run time of the job.
- disabled at (string): Indicates when a schedule was disabled.
- interval (integer): The time interval, in seconds, between recurring runs.
- module (string): The module name associated with the schedule.

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

6. CDM Manager (cdm-manager)

This API endpoint takes CDM parameters and validates the conjunction with Digantara's proprietary multi-modal dataset and gives a similarity metric for the ingested CDM.

API End-point:

https://fds.digantara.co/#post-/cdm-manager

Field Descriptions & Limitations:

1. CDM Parameters

Field	Datatype	Description	Constraints	Default choice	Optional
tca_utc	datetime	Time of close approach	ISO 8601 format: "YYYY-MM-DDT hh:mm:ss.sss"	-	No
<pre>miss_distance_m</pre>	float	Miss distance at close approach	Positive float value	-	No
<pre>collision_probab ility_method</pre>	string	The method used to calculate the probability of collision.	Allowed: ALFANO-2005, ALFANO-MAX-P ROBABILITY, CHAN-1997, FOSTER-1992, ELROD-2019	FOSTER-19 92	No
collision_probab ility	float	Probability of collision	Minimum: 0 Maximum: 1	-	No
relative_speed_m psz	float	Relative speed of satellites (in meters per second)	Positive float value	-	No

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

relative_states_ in_rtn	object	Relative state of secondary object with respect to primary object in RTN frame of reference	-	-	No
└─relative_posi tion_n_m, └─relative_posi tion_r_m, └─relative_posi tion_t_m	float	The Position components in meters	-	-	No
└─relative_velo city_n_mps └─relative_velo city_r_mps └─relative_velo city_t_mps	float	The Velocity components in meters per second	-	-	No
<pre>start_screen_per iod_utc</pre>	datetime	Start of conjunction screening	ISO 8601 format: "YYYY-MM-DDT hh:mm:ss.sss"	-	No
<pre>stop_screen_peri od_utc</pre>	datetime	End of conjunction screening	ISO 8601 format: "YYYY-MM-DDT hh:mm:ss.sss"	-	No
primary_object_n orad_id	integer	NORAD ID of primary object	Minimum: 1 Maximum: 99999	-	No
<pre>primary_object_s tate</pre>	object	States of primary object on time of close approach	-	-	No
└──x_km └──y_km └──z_km	float	The Position components in kilometers	-	-	No

└─x_dot_kmps └─y_dot_kmps └─z_dot_kmps	float	The Velocity components in kilometers per second	-	-	No
<pre>primary_object_c ovariance</pre>	object	Covariance of primary object on the time of close approach	-	-	No
cn_n_m2	float	Variance in the cross-track (N) position, measured in square meters	Valid range: ≥ 0	-	No
cr_r_m2	float	Variance in the radial (R) position, measured in square meters	Valid range: ≥ 0	-	No
ct_t_m2	float	Variance in the along-track (T) position, measured in square meters	Valid range: ≥ 0	-	No
cn_r_m2	float	Covariance between cross-track (N) and radial (R) positions, measured in square meters	Valid range: ≥ 0	-	No
cn_t_m2	float	Covariance between cross-track (N) and along-track (T) positions,	Valid range: ≥ 0	-	No

		measured in square meters			
cr_t_m2	float	Covariance between radial (R) and along-track (T) positions, measured in square meters	Valid range: ≥ 0	-	No
<pre>cndot_ndot_m2ps2</pre>	float	Variance in the cross-track (N) velocity, measured in square meters per second squared	Valid range: ≥ 0	-	No
<pre>crdot_rdot_m2ps2</pre>	float	Variance in the radial (R) velocity, measured in square meters per second square	Valid range: ≥ 0	-	No
<pre>ctdot_tdot_m2ps2</pre>	float	Variance in the along-track (T) velocity, measured in square meters per second squared	Valid range: ≥ 0	-	No
<pre>cndot_rdot_m2ps2</pre>	float	Covariance between cross-track (N) velocity and radial (R) velocity, measured in square meters per second squared	Valid range: ≥ 0	_	No

<pre>cndot_tdot_m2ps2 crdot_tdot_m2ps2</pre>	float	Covariance between cross-track (N) velocity and along-track (T) velocity, measured in square meters per second squared	Valid range: ≥ 0	-	No
cndot_n_m2ps	float	Covariance between cross-track (N) position and cross-track velocity, measured in square meters per second	Valid range: ≥ 0	-	No
<pre>cndot_r_m2ps</pre>	float	Covariance between cross-track (N) position and radial (R) velocity, measured in square meters per second	Valid range: ≥ 0	-	No
<pre>cndot_t_m2ps</pre>	float	Covariance between cross-track (N) position and along-track (T) velocity, measured in square meters per second	Valid range: ≥ 0	-	No

crdot_r_m2ps	float	Covariance between radial (R) position and radial velocity, measured in square meters per second	Valid range: ≥ 0	-	No
crdot_n_m2ps	float	Covariance between radial (R) position and cross-track (N) velocity, measured in square meters per second	Valid range: ≥ 0	-	No
<pre>crdot_t_m2ps</pre>	float	Covariance between radial (R) position and along-track (T) velocity, measured in square meters per second	Valid range: ≥ 0	-	No
ctdot_n_m2ps	float	Covariance between along-track (T) position and cross-track (N) velocity, measured in square meters per second	Valid range: ≥ 0	-	No
ctdot_r_m2ps	float	Covariance between along-track (T) position and radial (R)	Valid range: ≥ 0	-	No

		velocity, measured in square meters per second			
<pre>ctdot_t_m2ps</pre>	float	Covariance between along-track (T) position and along-track (T) velocity, measured in square meters per second	Valid range: ≥ 0	-	No
<pre>secondary_object _norad_id</pre>	integer	NORAD ID of secondary object	Minimum: 1 Maximum: 99999	-	No
<pre>secondary_object _state</pre>	object	States of secondary object on time of close approach (Same layout of position and velocity as primary object)	-	-	No
<pre>secondary_object _covariance</pre>	object	Covariance of secondary object on the time of close approach (Same layout of covariance as primary object)			

Request Example

```
{
    "cdm_parameters": {
        "collision_probability": 0.00008817232570478996,
        "collision_probability_method": "FOSTER-1992",
        "miss_distance_m": 12524.559653287553,
    }
}
```


Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in


```
"primary_object_covariance": {
"cn_n_m2": 0,
"cn_r_m2": 0,
"cn_t_m2": 0,
"cndot n m2ps": 0,
"cndot_ndot_m2ps2": 0,
"cndot_r_m2ps": 0,
"cndot_rdot_m2ps2": 0,
"cndot_t_m2ps": 0,
"cndot_tdot_m2ps2": 0,
"cr_r_m2": 0,
"crdot_n_m2ps": 0,
"crdot_r_m2ps": 0,
"crdot_rdot_m2ps2": 0,
"crdot t m2ps": 0,
"ct_r_m2": 0,
"ct t m2": 0,
"ctdot_n_m2ps": 0,
"ctdot_r_m2ps": 0,
"ctdot rdot m2ps2": 0,
"ctdot_t_m2ps": 0,
"ctdot tdot m2ps2": 0
},
"primary_object_norad_id": 55161,
"primary_object_state": {
"x_dot_kmps": 0,
"x_km": 0,
"y_dot_kmps": 0,
"y_km": 0,
"z dot kmps": 0,
"z_km": 0
},
"relative_speed_mps": 7343.659692548911,
"relative_states_in_rtn": {
"relative_position_n_m": 5051.072649367569,
"relative_position_r_m": -7652.210935026668,
"relative_position_t_m": 8531.99433927541,
"relative_velocity_n_mps": 6328.315266198509,
"relative_velocity_r_mps": -7.967524511465651,
"relative velocity t mps": -3725.8153591019
},
"secondary_object_covariance": {
"cn n m2": 0,
"cn_r_m2": 0,
"cn t m2": 0,
"cndot n m2ps": 0,
"cndot ndot m2ps2": 0,
```


DIGAXTARA

```
"cndot_r_m2ps": 0,
    "cndot_rdot_m2ps2": 0,
    "cndot_t_m2ps": 0,
    "cndot_tdot_m2ps2": 0,
    "cr_r_m2": 0,
    "crdot_n_m2ps": 0,
    "crdot_r_m2ps": 0,
    "crdot_rdot_m2ps2": 0,
     "crdot_t_m2ps": 0,
    "ct_r_m2": 0,
    "ct_t_m2": 0,
    "ctdot_n_m2ps": 0,
    "ctdot_r_m2ps": 0,
    "ctdot_rdot_m2ps2": 0,
    "ctdot_t_m2ps": 0,
    "ctdot tdot m2ps2": 0
    },
    "secondary_object_norad_id": 48062,
    "secondary_object_state": {
    "x dot kmps": 0,
    "x_km": 0,
    "y_dot_kmps": 0,
    "y_km": 0,
     "z_dot_kmps": 0,
    "z km": 0
    },
    "start_screen_period_utc": "2024-10-20T08:27:54.000Z",
    "stop_screen_period_utc": "2024-10-24T11:05:54.000Z",
    "tca utc": "2024-10-24T10:25:28.996338Z"
}
```


}

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

7. Collision Avoidance Maneuver (CAM)

This API endpoint calculates and suggests an optimal collision avoidance maneuver (CAM) for the primary satellite based on conjunction data. The maneuver is designed to minimize the probability of collision (Pc) by maneuvering the primary satellite's trajectory to avoid the collision.

API End-point:

https://fds.digantara.co/#post-/cam

Field Descriptions & Limitations:

1. CDM Parameters

Field	Datatype	Description	Constraints	Default choice	Optional
tca_utc	datetime	Time of close approach	ISO 8601 format: "YYYY-MM-DDT hh:mm:ss.sss"	-	No
<pre>miss_distance_m</pre>	float	Miss distance at close approach	Positive float value	-	No
<pre>collision_probab ility_method</pre>	string	The method used to calculate the probability of collision.	Allowed: ALFANO-2005, ALFANO-MAX-P ROBABILITY, CHAN-1997, FOSTER-1992, ELROD-2019	FOSTER-19 92	No
collision_probab ility	float	Probability of collision	Minimum: 0 Maximum: 1	-	No
relative_speed_m psz	float	Relative speed of satellites (in meters per second)	Positive float value	-	No

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

relative_states_ in_rtn	object	Relative state of secondary object with respect to primary object in RTN frame of reference	-	-	No
└─relative_posi tion_n_m, └─relative_posi tion_r_m, └─relative_posi tion_t_m	float	The Position components in meters	-	-	No
└─relative_velo city_n_mps └─relative_velo city_r_mps └─relative_velo city_t_mps	float	The Velocity components in meters per second	-	-	No
<pre>start_screen_per iod_utc</pre>	datetime	Start of conjunction screening	ISO 8601 format: "YYYY-MM-DDT hh:mm:ss.sss"	-	No
<pre>stop_screen_peri od_utc</pre>	datetime	End of conjunction screening	ISO 8601 format: "YYYY-MM-DDT hh:mm:ss.sss"	-	No
primary_object_n orad_id	integer	NORAD ID of primary object	Minimum: 1 Maximum: 99999	-	No
<pre>primary_object_s tate</pre>	object	States of primary object on time of close approach	-	-	No
└──x_km └──y_km └──z_km	float	The Position components in kilometers	-	-	No

└─x_dot_kmps └─y_dot_kmps └─z_dot_kmps	float	The Velocity components in kilometers per second	-	-	No
<pre>primary_object_c ovariance</pre>	object	Covariance of primary object on the time of close approach	-	-	No
cn_n_m2	float	Variance in the cross-track (N) position, measured in square meters	Valid range: ≥ 0	-	No
cr_r_m2	float	Variance in the radial (R) position, measured in square meters	Valid range: ≥ 0	-	No
ct_t_m2	float	Variance in the along-track (T) position, measured in square meters	Valid range: ≥ 0	-	No
cn_r_m2	float	Covariance between cross-track (N) and radial (R) positions, measured in square meters	Valid range: ≥ 0	-	No
cn_t_m2	float	Covariance between cross-track (N) and along-track (T) positions,	Valid range: ≥ 0	-	No

		measured in square meters			
cr_t_m2	float	Covariance between radial (R) and along-track (T) positions, measured in square meters	Valid range: ≥ 0	_	No
<pre>cndot_ndot_m2ps2</pre>	float	Variance in the cross-track (N) velocity, measured in square meters per second squared	Valid range: ≥ 0	-	No
<pre>crdot_rdot_m2ps2</pre>	float	Variance in the radial (R) velocity, measured in square meters per second square	Valid range: ≥ 0	-	No
<pre>ctdot_tdot_m2ps2</pre>	float	Variance in the along-track (T) velocity, measured in square meters per second squared	Valid range: ≥ 0	-	No
<pre>cndot_rdot_m2ps2</pre>	float	Covariance between cross-track (N) velocity and radial (R) velocity, measured in square meters per second squared	Valid range: ≥ 0	_	No

<pre>cndot_tdot_m2ps2 crdot_tdot_m2ps2</pre>	float	Covariance between cross-track (N) velocity and along-track (T) velocity, measured in square meters per second squared	Valid range: ≥ 0	-	No
cndot_n_m2ps	float	Covariance between cross-track (N) position and cross-track velocity, measured in square meters per second	Valid range: ≥ 0	-	No
<pre>cndot_r_m2ps</pre>	float	Covariance between cross-track (N) position and radial (R) velocity, measured in square meters per second	Valid range: ≥ 0	-	No
<pre>cndot_t_m2ps</pre>	float	Covariance between cross-track (N) position and along-track (T) velocity, measured in square meters per second	Valid range: ≥ 0	-	No

crdot_r_m2ps	float	Covariance between radial (R) position and radial velocity, measured in square meters per second	Valid range: ≥ 0	-	No
crdot_n_m2ps	float	Covariance between radial (R) position and cross-track (N) velocity, measured in square meters per second	Valid range: ≥ 0	-	No
<pre>crdot_t_m2ps</pre>	float	Covariance between radial (R) position and along-track (T) velocity, measured in square meters per second	Valid range: ≥ 0	-	No
ctdot_n_m2ps	float	Covariance between along-track (T) position and cross-track (N) velocity, measured in square meters per second	Valid range: ≥ 0	-	No
ctdot_r_m2ps	float	Covariance between along-track (T) position and radial (R)	Valid range: ≥ 0	-	No

		velocity, measured in square meters per second			
<pre>ctdot_t_m2ps</pre>	float	Covariance between along-track (T) position and along-track (T) velocity, measured in square meters per second	Valid range: ≥ 0	-	No
<pre>secondary_object _norad_id</pre>	integer	NORAD ID of secondary object	Minimum: 1 Maximum: 99999	-	No
<pre>secondary_object _state</pre>	object	States of secondary object on time of close approach (Same layout of position and velocity as primary object)	-	-	No
<pre>secondary_object _covariance</pre>	object	Covariance of secondary object on the time of close approach (Same layout of covariance as primary object)			

2. Custom maneuver parameters (Optional input)

Field	Datatype	Description	Constraints	Default choice	Optional
start_utc	datetime	Maneuver start epoch	ISO 8601 format:	-	Yes

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

			"YYYY-MM-D DThh:mm:ss.sss "		
duration_s	float	Duration of maneuver from the start_utc in seconds	Valid range: ≥ 0	-	Yes
thrust_directio n_rsw	object	Direction of thrust for the maneuver in the RSW frame of reference.	-	-	Yes
└─r └─s └─w	float	Thrust magnitude in RSW component in Newton	-	-	Yes

3. Propulsion system parameters (Optional input)

Field	Datatype	Description	Constraints	Default choice	Optional
<pre>specific_impuls e_s</pre>	float	The specific impulse of the propulsion system in second	Minimum: 100 Maximum: 300	-	Yes
thrust	float	Thrust provided by the propulsion system during the maneuver in Newton		-	Yes

4. Post collision avoidance maneuver conjunction analysis parameters

Field	Datatype	Description	Constraints	Default choice	Optional
<pre>screen_threshol d_km</pre>	float	The screening threshold distance is in kilometers. Objects within a spherical volume with the radius as the specified threshold distance	Minimum: 1 Maximum: 100	-	No

DIGAMTARA

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in
DIGANTARA

	will be considered as		
	potential conjunction.		

5. Satellite parameter (Optional parameter)

Field	Datatype	Description	Constraints	Default choice	Optional
primary_initial _mass_kg	float	Initial mass of the primary satellite in kilograms. (Note: If the initial mass is not provided, the mass will be retrieved from Digantara's database. If the mass value is not available in the database, it will be assumed to be 5 kg)			Yes

5. CAM parameter (Optional parameter)

Field	Datatype	Description	Constraints	Default choice	Optional
desired_miss_di stance_km	float	User defined threshold for miss distance desired for a given conjunction. The maneuver is designed to meet this miss distance at TCA.	Valid range: > CDM given DCA	-	Yes

Request Example

```
{
    "cdm_parameters": {
        "collision_probability": 0.00008817232570478996,
        "collision_probability_method": "FOSTER-1992",
        "miss_distance_m": 12524.559653287553,
        "primary_object_covariance": {
    }
}
```


Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in


```
"cn_n_m2": 0,
"cn_r_m2": 0,
"cn_t_m2": 0,
"cndot n m2ps": 0,
"cndot_ndot_m2ps2": 0,
"cndot_r_m2ps": 0,
"cndot_rdot_m2ps2": 0,
"cndot_t_m2ps": 0,
"cndot_tdot_m2ps2": 0,
"cr_r_m2": 0,
"crdot_n_m2ps": 0,
"crdot_r_m2ps": 0,
"crdot_rdot_m2ps2": 0,
"crdot_t_m2ps": 0,
"ct r m2": 0,
"ct_t_m2": 0,
"ctdot n m2ps": 0,
"ctdot_r_m2ps": 0,
"ctdot_rdot_m2ps2": 0,
"ctdot t m2ps": 0,
"ctdot_tdot_m2ps2": 0
},
"primary_object_norad_id": 55161,
"primary_object_state": {
"x dot kmps": 0,
"x_km": 0,
"y_dot_kmps": 0,
"y_km": ∅,
"z_dot_kmps": 0,
"z km": 0
},
"relative_speed_mps": 7343.659692548911,
"relative_states_in_rtn": {
"relative_position_n_m": 5051.072649367569,
"relative position r m": -7652.210935026668,
"relative_position_t_m": 8531.99433927541,
"relative_velocity_n_mps": 6328.315266198509,
"relative_velocity_r_mps": -7.967524511465651,
"relative_velocity_t_mps": -3725.8153591019
},
"secondary_object_covariance": {
"cn n m2": 0,
"cn_r_m2": 0,
"cn_t_m2": 0,
"cndot n m2ps": 0,
"cndot ndot m2ps2": 0,
"cndot r m2ps": 0,
```


Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

```
"cndot_rdot_m2ps2": 0,
    "cndot_t_m2ps": 0,
    "cndot_tdot_m2ps2": 0,
    "cr_r_m2": 0,
    "crdot n m2ps": 0,
    "crdot_r_m2ps": 0,
    "crdot_rdot_m2ps2": 0,
    "crdot_t_m2ps": 0,
    "ct_r_m2": 0,
    "ct_t_m2": 0,
    "ctdot_n_m2ps": 0,
    "ctdot_r_m2ps": 0,
    "ctdot_rdot_m2ps2": 0,
    "ctdot_t_m2ps": 0,
    "ctdot tdot m2ps2": 0
    },
    "secondary_object_norad_id": 48062,
    "secondary_object_state": {
    "x_dot_kmps": 0,
    "x km": 0,
    "y dot kmps": 0,
    "y_km": 0,
    "z_dot_kmps": 0,
    "z_km": 0
    },
    "start_screen_period_utc": "2024-10-20T08:27:54.000Z",
    "stop_screen_period_utc": "2024-10-24T11:05:54.000Z",
    "tca utc": "2024-10-24T10:25:28.996338Z"
},
"custom maneuver parameters": [
    {
    "duration_s": 20,
    "start_utc": "2024-07-02T13:10:10.000Z",
    "thrust direction rsw": {
    "r": 0,
    "s": 1,
    "w": 0
    }
    }
],
"post_conjunction_analysis_parameters": {
    "screen threshold km": 25
},
"propulsion parameters": {
    "specific impulse s": 230,
    "thrust magnitude N": 1
},
```

DIGAMTARA

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in


```
"cam_parameters": {
    "desired_miss_distance_km": 15
}
}
```


Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

8. GEO East-West Station Keeping Maneuver (EWSK)

This API end-point provides a station-keeping maneuver design for longitude control.

API End-point:

https://fds.digantara.co/#post-/ewsk

Field	Datatype	Description	Constraints	Default choice	Optional
norads	integer	NORAD IDs for which station keeping has to perform	NORAD IDs	["44334"]	No
<pre>longitude_deadb and_deg</pre>	float	Longitude deadband in degrees	Minimum: 0.01 Maximum: 5	0.1	No
<pre>control_cycle_d ays</pre>	integer	Control cycle duration in days	Minimum: 1, Maximum: 366	15	No
satellite_param eters	object	Satellite related parameters		-	No
area_m2	float	Area of satellite in meter square	-	2	No
mass_kg	float	Mass of satellite in kilograms	Minimum: 1, Maximum: 5000	2000	No

Field Descriptions & Limitations:

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

<pre>coeff_solar_rad iation</pre>	float	Coefficient of solar radiation pressure	-	1.5	No
<pre>propulsion_para meters</pre>	Object	Propulsion system parameters	-	-	No
<pre>specific_impuls e_s</pre>	float	The specific impulse of the propulsion system in second	Minimum: 100 Maximum: 300	-	Yes
thrust_magnitud e_N	float	Thrust provided by the propulsion system during the maneuver in Newton	Minimum: 10 ⁻⁵ Maximum: 50	-	Yes

Request Example

```
{
    "control_cycle_days": 15,
    "longitude_deadband_deg": 0.1,
    "norad_id": 44334,
    "propulsion_parameters": {
        "specific_impulse_s": 230,
        "thrust_magnitude_N": 1
    },
    "satellite_parameters": {
        "area_m2": 2,
        "coeff_solar_radiation": 1.5,
        "mass_kg": 2000
    }
}
```


Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

9. GEO North-South Station Keeping Maneuver (NSSK)

This API end-point provides a station-keeping maneuver design for latitude control.

API End-point:

https://fds.digantara.co/#post-/nssk

Field	Datatype	Description	Constraints	Default choice	Optional
norads	integer	NORAD IDs for which station keeping has to perform	NORAD IDs	["44334"]	No
latitude_deadba nd_deg	float	Latitude deadband in degrees	Minimum: 0.01 Maximum: 5	0.1	No
<pre>control_cycle_d ays</pre>	integer	Control cycle duration in days	Minimum: 1, Maximum: 366	15	No
propulsion_para meters	Object	Propulsion system parameters	-	-	No
<pre>specific_impuls e_s</pre>	float	The specific impulse of the propulsion system in second	Minimum: 100 Maximum: 300	-	Yes
thrust_magnitud e_N	float	Thrust provided by the propulsion system during the maneuver in Newton	Minimum: 10 ^{-5>} Maximum: 50	-	Yes

Field Descriptions & Limitations:

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

Request Example

```
{
   "control_cycle_days": 15,
   "latitude_deadband_deg": 0.1,
   "norad_id": 44334,
   "propulsion_parameters": {
        "specific_impulse_s": 230,
        "thrust_magnitude_N": 50
   }
}
```


Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

10. GEO Combined Station Keeping Maneuver (Combined-SK)

This API end-point provides a combined station-keeping maneuver design for longitude and latitude control. It gives a combined maneuver plan.

API End-point:

https://fds.digantara.co/#post-/combined-sk

Field	Datatype	Description	Constraints	Default choice	Optional
norads	integer	NORAD IDs for which station keeping has to perform	NORAD IDs	["44334"]	No
<pre>longitude_deadb and_deg</pre>	float	Longitude deadband in degrees	Minimum: 0.01 Maximum: 5	0.1	No
<pre>control_cycle_d ays</pre>	integer	Control cycle duration in days	Minimum: 1, Maximum: 366	15	No
latitude_deadba nd_deg	float	Latitude deadband in degrees	Minimum: 0.01 Maximum: 5	0.1	No
satellite_param eters	object	Satellite related parameters	-	-	No
area_m2	float	Area of satellite in meter square	-	2	No

Field Descriptions & Limitations:

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

mass_kg	float	Mass of satellite in kilograms	Minimum: 1, Maximum: 5000	2000	No
<pre>coeff_solar_rad iation</pre>	float	Coefficient of solar radiation pressure	-	1.5	No
propulsion_para meters	Object	Propulsion system parameters	-	-	No
<pre>specific_impuls e_s</pre>	float	The specific impulse of the propulsion system in second	Minimum: 100 Maximum: 300	-	Yes
thrust_magnitud e_N	float	Thrust provided by the propulsion system during the maneuver in Newton	Minimum: 10 ^{-5>} Maximum: 50	-	Yes

Request Example

```
{
   "control_cycle_days": 15,
   "longitude_deadband_deg": 0.1,
   "latitude_deadband_deg": 0.1,
   "norad_id": 44334,
   "propulsion_parameters": {
        "specific_impulse_s": 230,
        "thrust_magnitude_N": 1
   },
   "satellite_parameters": {
        "area_m2": 2,
        "coeff_solar_radiation": 1.5,
        "mass_kg": 2000
   }
}
```

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

11. High Accuracy Pass Prediction (HAPP)

HAPP provides highly accurate predictions for satellite passes over ground stations. It utilizes sophisticated algorithms and Digantara's proprietary catalogue data to calculate precise pass details of the corresponding set of satellites. By leveraging HAPP, satellite operators can optimize their communication windows and enhance overall mission efficiency.

API End-point:

https://fds.digantara.co/#post-/happ

Field	Datatype	Description	Constraints	Default choice	Optional
norads	[string]	List of NORAD IDs for which High Accuracy Pass Prediction has to perform	List of NORAD IDs	["25544"]	No
ground_stations	objects	Ground station parameters			No
latitude	float	Latitude of ground station for HAPP	Minimum: -90, Maximum: 90	12.9716	No
longitude	float	Longitude of ground station for HAPP	Minimum: -180, Maximum: 180	77.5946	No
name	string	Name of ground station. Should be alphanumeric	-	Bengaluru	No

Field Descriptions & Limitations:

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

<pre>propagation_set tings</pre>		Propagation Parameters			
duration_days	float	Duration for which HAPP will be performed in days.	Minimum: 0.05, Maximum: 5	1	Yes
elevation_lower _limit_degrees	float	Optical elevation lower limit in degrees.	Minimum: 0, Maximum: 30	0	Yes
<pre>step_size_sec</pre>	float	Propagation time step in seconds	Minimum: 0.1, Maximum: 60	5	Yes

Request Example

```
{
  "ground_stations": [
    {
      "latitude": 12.9716,
      "longitude": 77.5946,
      "name": "Bengaluru"
    }
  ],
  "norads": [
    "25544"
  ],
  "propagation_settings": {
    "duration_days": 1,
    "elevation_lower_limit_degrees": 0,
    "step_size_sec": 5
  }
}
```


Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

DIGAMTARA

12. Satellite Search Mode (SSM)

Satellite Search Mode is a scheduling generator that provides a schedule for tracking satellites deployed in a single launch when observed from provided ground stations. It provides an efficient way of tracking most satellites in a single pass.

API End-point:

https://fds.digantara.co/#post-/ssm

Field	Datatype	Description	Constraints	Default choice	Optional
I'ICIU	Datatype	Description	Constraints	Default choice	Optional
custom_TLEs	[object]	List of objects containing custom TLE as input	-	-	No
object_diameter _ ^m	string	Diameter of the object in meters	Greater than 0	-	Yes
tle_line_1	string	TLE line 1	-	-	No
tle_line_2	string	TLE line 2	-	-	No
ground_stations	objects	Ground station parameters			No
latitude	float	Latitude of ground station for SSM	Minimum: -90, Maximum: 90	12.9716	No

Field Descriptions & Limitations:

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

longitude	float	Longitude of ground station for SSM	Minimum: -180, Maximum: 180	77.5946	No
name	string	Name of ground station. Should be alphanumeric	-	Bengaluru	No
elevation_lower _limit_degrees	float	Optical elevation lower limit in degrees.	Minimum: 0, Maximum: 30	0	Yes
wgs84_elevation _km	string	WGS84 Elevation of ground station in km	Minimum: 0 Maximum: 100	-	Yes
propagation_set tings	object	Propagation Parameters			
duration_days	float	Duration for which HAPP will be performed in days.	Minimum: 0.05, Maximum: 5	1	Yes
<pre>step_size_sec</pre>	float	Propagation time step in seconds	Minimum: 0.1, Maximum: 60	5	Yes
tracking_params	object	Tracking parameters			
<pre>minimum_pass_du ration_sec</pre>	float	Minimum duration for a single pass of the deployed satellite	Minimum: 20, Maximum: 120	20	No
<pre>tracking_durati on_per_pass_sec</pre>	float	Amount of duration for	Minimum: 10 Maximum: 120	10	No

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

	tracking a single satellite in a pass		

Request Example

```
{
  "custom TLEs": [
      {
      "object_diameter_m": "",
      "tle_line_1": "1 87624U 99025 24331.58250310 +.00016854 +00000+0
+29834-2 0 9990",
      "tle line 2": "2 87624 98.6678 241.1599 0110610 355.7680 4.2574
14.63445390524391"
      }
  ],
  "ground_stations": [
      {
      "elevation lower limit degrees": 0,
      "latitude": 12.98,
      "longitude": 77.6,
      "name": "BLR1",
      "wgs84_altitude_km": ""
      }
  ],
  "propagation_settings": {
      "duration_days": 1,
      "elevation_lower_limit_degrees": 0,
      "step_size_sec": 5
  },
  "tracking_params": {
      "minimum_pass_duration_sec": 20,
      "tracking_duration_per_pass_sec": 10
  }
}
```


Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

13. First Contact Assistance (FCA)

The First Contact Assistance module is designed to support early-stage satellite tracking by generating precise orbital predictions based on the initial state vector of newly launched satellite. Starting with this initial state, the module performs orbit propagation, producing propagated states data and Two-Line Element (TLE). It provides optimal pass predictions for establishing first contact with the satellite by using ground station parameters.

API End-Point:

https://fds.digantara.co/#post-/fca

Field Descriptions & Limitations:

1. opm_params (Orbit Propagation Parameters)

a. Object Parameters

Field	Datatype	Description	Constraints	Default choice	Optional
name	string	Object Identifier	Any string allowed	-	No
id	string	International Designator unique object identifier used in OEM and TLE files.	See ID format section below	-	No
norad_id	string	NORAD catalog identifier	Any string allowed	-	No

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

position_km	object	Initial J2000/EME2000 position components (in km)	Magnitude of (x,y,z) must be > 6478.137 km	-	No
└─x, └─y, └─z	float	The position components in km	-	-	No
velocity_kmps	object	Initial J2000/EME2000 velocity components (in kilometers per second)	-	-	No
└─x_dot, └─y_dot, └─z_dot	float	The velocity components in kilometers per second	-	-	No
mass_kg	float	Mass of the object (in kg)	Valid range: [1, 100000] kg	1 kg	Yes
<pre>cross_section_a rea_m2</pre>	float	Cross-sectional area of the object (in square meters)	Valid range: [0.0001, 1000] m ²	1 m ²	Yes
drag_coefficien t	float	The drag coefficient (dimensionless)	Valid range: > 0	2.2	Yes
<pre>reflectivity_co efficient</pre>	float	Reflectivity coefficient for solar radiation pressure	Valid range:[1, 2]	1.1	Yes

id format:

For OEM & TLE, the identifier has the format YYYY-NNNPPP, where:

• YYYY: Year of launch,

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

DIGAMTARA

- NNN: Three-digit serial number indicating the launch number in that year.
- PPP: Part specifier (1 to 3 alphabets in capital letters) indicating the part of the object placed in orbit during the launch

b. Covariance Matrix (ECI_J2000)

Field	Datatype	Description	Constraints	Default choice	Optional
<pre>cov_diag_pos_x u_km2</pre>	float	Variance of the position X in km ²	Valid range: ≥ 0	0	Yes
cov_diag_pos_y v_km	float	Variance of the position Y in km ²	Valid range: ≥ 0	0	Yes
cov_diag_pos_z w_km2	float	Variance of the position Z in km ²	Valid range: ≥ 0	0	Yes
<pre>cov_diag_vel_x u_km2ps2</pre>	float	Variance of velocity X in (km/s) ²	Valid range: ≥ 0	0	Yes
<pre>cov_diag_vel_y v_km2ps2</pre>	float	Variance of velocity Y in (km/s) ²	Valid range: ≥ 0	0	Yes
<pre>cov_diag_vel_z w_km2ps2</pre>	float	Variance of velocity Z in (km/s) ²	Valid range: ≥ 0	0	Yes
off-diagonal elements	float	Covariance matrix off-diagonal elements	-	0	Yes

c. Propagation Settings

Field	Datatype	Description	Constraints	Default choice	Optional
<pre>start_time</pre>	datetime	Propagation start time	ISO 8601 format: "YYYY-MM-DD Thh:mm:ss.sss"	-	No
end_time	datetime	Propagation end time	ISO 8601 format: "YYYY-MM-DD Thh:mm:ss.sss"		No

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

<pre>step_size_sec</pre>	integer	The step size for propagation, in seconds	Valid range: [1, 86400] seconds	60 seconds	No
geopotential_m odel	integer	GeopotentialmodelValues:3forEarth's1=EGM96,perturbation2=EGM2008,3=EIGEN-GL04C		3	Yes
geopotential	integer	Degree of the Earth's geopotential perturbations	geopotential 360]		Yes
atmospheric_mo del	integer	Atmospheric model used	-		Yes
sun gravity	boolean	Sun gravity perturbation	true/false	true	Yes
moon gravity	boolean	Moon gravity perturbation	true/false	true	Yes
solid_earth_ti des	boolean	Solid Earth tides perturbation			Yes
ocean_tides	boolean	Ocean tides perturbation			Yes
solar_radiatio n_pressure	boolean	Solar radiation pressure perturbation	true/false	true	Yes
earth_albedo	boolean	Earth albedo perturbation	true/false	true	Yes

Covariance-related propagation settings:

ld Datatype	Description	Constraints	Default	Optional
-------------	-------------	-------------	---------	----------

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

				choice	
<pre>cov_prop_switch</pre>	boolean	Enable covariance propagation	true/false	false	Yes
<pre>cov_deg_of_geop otential</pre>	integer	Geopotential degree for covariance propagation	Valid range: [0 to 360]	4	Yes
cov_atm_drag	boolean	Atmospheric drag for covariance propagation	true/false	false	Yes
cov_pert_sun. cov_pert_moon	boolean	Luni-Solar perturbation for covariance propagation	true/false	false	Yes
cov_pert_srp	boolean	Solarradiationpressureforcovariancepropagation	true/false	false	Yes
Ephem_integ_abs tol	float	Absolute integrator tolerance	Valid range: >0	1e-11	Yes
Ephem_integ_rel tol	float	Relative integrator tolerance	Valid range: >0	1e-10	Yes

d. Maneuvers

Field	Datatype	Description	Constraints	Default choice	Optional
maneuvers_uvw	object	List of maneuvers applied to the object	Maneuver fields below	-	Yes
└─ start_time	datetime	The time when the maneuver begins	All times should be specified in ISO 8601 format. Format: "YYYY-MM-DDT hh:mm:ss.sss"	-	No*

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

L_ duration_sec	float	The duration of the maneuver in seconds	Valid range: >0 seconds	-	No*
L_ acceleration_km ps2	object	Acceleration components in UVW frame, in kilometers per second squared.	-	-	No*
└─ acc_u	float	U component acceleration	-	-	No*
└─ acc_v	float	V component acceleration	-		No*
└─ acc_w	float	W component acceleration	-	-	No*
└─ eff	float	Efficiency factor for the commanded thrust	Valid range [0, 1.0]	1.0	Yes

e. TLE Generation

Field	Datatype	Description	Constraints	Default choice	Optional
generate_tle	boolean	Option to generate a TLE from the ephemeris	true/false	false	Yes

2. passes_params (Pass Prediction Parameters)

Field	Datatype	Description	Constraints	Default choice	Optional
ground_stations	object	Ground station parameters			No

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

latitude	float	Latitude of ground station for HAPP	Minimum: -90, Maximum: 90	12.9716	No
longitude	float	Longitude of ground station for HAPP	Minimum: -180, Maximum: 180	77.5946	No
wgs84_elevation _km	string	WGS84 Elevation of ground station in km	Minimum: 0 Maximum: 100	0.9	Yes
name	string	Name of ground station. Should be alphanumeric	-	Bengaluru	No
propagation_set tings		Propagation Parameters			
duration_days	float	Duration for which HAPP will be performed in days.	Minimum: 0.05, Maximum: 5	1	Yes
elevation_lower _limit_degrees	float	Optical elevation lower limit in degrees.	Minimum: 0, Maximum: 30	0	Yes
<pre>step_size_sec</pre>	float	Propagation time step in seconds	Minimum: 0.1, Maximum: 60	5	Yes
object_params	object	Parameters associated with object	-	-	-

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

object_size_m	string	Maximum Diameter/span of the satellite	Minimum: 0.01 Maximum: 100	1.0	Yes
---------------	--------	--	-------------------------------------	-----	-----

Request Example

{	
"(<pre>opm_params": {</pre>
	<pre>"covariance_ECI_J2000": {</pre>
	"cov_diag_pos_xu_km2": 10000,
	"cov_diag_pos_yv_km2": 10000,
	"cov_diag_pos_zw_km2": 10000,
	<pre>"cov_diag_vel_xu_km2ps2": 0.01,</pre>
	<pre>"cov_diag_vel_yv_km2ps2": 0.01,</pre>
	<pre>"cov_diag_vel_zw_km2ps2": 0.01,</pre>
	<pre>"cov_offdiag_km2ps2": {</pre>
	<pre>"cov_offdiag_21": 0,</pre>
	<pre>"cov_offdiag_31": 0,</pre>
	<pre>"cov_offdiag_32": 0,</pre>
	"cov_offdiag_41": 0,
	<pre>"cov_offdiag_42": 0,</pre>
	<pre>"cov_offdiag_43": 0,</pre>
	<pre>"cov_offdiag_51": 0,</pre>
	"cov_offdiag_52": 0,
	<pre>"cov_offdiag_53": 0,</pre>
	"cov_offdiag_54": 0,
	<pre>"cov_offdiag_61": 0,</pre>
	<pre>"cov_offdiag_62": 0,</pre>
	<pre>"cov_offdiag_63": 0,</pre>
	<pre>"cov_offdiag_64": 0,</pre>
	<pre>"cov_offdiag_65": 0</pre>
	}
	},
	"generate_tle": true,
	"maneuvers_uvw": [
	{
	"acceleration_kmps2": {
	"acc_u": 0,
	"acc_v": 0,
	"acc_w": 0
	},
	"duration_sec": 0,
	"eff": 1,
	"start_time": "2023-08-04T01:00:00"
	}

DIGAMTARA

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

```
],
    "object": {
    "cross_section_area_m2": 0.0452389342,
    "drag_coefficient": 2.2,
    "id": "2012DA14",
    "mass_kg": 23.28,
    "name": "LARETS",
    "norad_id": "27944",
    "position_km": {
    "x": 1166.3832041214,
    "y": -569.998057629246,
    "z": -6939.59483659417
    },
    "reflectivity_coefficient": 1.2,
    "velocity_kmps": {
    "x dot": 1.69394028376941,
    "y dot": -7.26108827784564,
    "z dot": 0.880941038701065
    }
    },
    "propagation_settings": {
    "atmospheric_drag": true,
    "atmospheric_model": 2,
    "cov_atm_drag": false,
    "cov_deg_of_geopotential": 4,
    "cov_pert_moon": false,
    "cov_pert_srp": false,
    "cov_pert_sun": false,
    "cov_prop_switch": false,
    "earth albedo": true,
    "end_time": "2023-06-01T00:00:00.000",
    "ephem_integ_abstol": 1e-11,
    "ephem_integ_reltol": 1e-10,
    "geopotential": 70,
    "geopotential_model": 3,
    "moon_gravity": true,
    "ocean_tides": true,
    "solar_radiation_pressure": true,
    "solid_earth_tides": true,
    "start time": "2023-05-31T00:00:00.000",
    "step_size_sec": 60,
    "sun gravity": true
    }
},
"passes params": {
    "ground stations": [
```

DIGANTARA

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in


```
"latitude_deg": 12.9716,
"longitude_deg": 77.5946,
"name": "Bengaluru",
"wgs84_elevation_km": "0.9"
}
],
"object_params": {
"object_size_m": "1.0"
},
"propagation_settings": {
"duration_days": 1,
"elevation_lower_limit_degrees": 0,
"step_size_sec": 5
}
```

}

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

14. API Usage Guide

Creating Back-end Request ID

- Using the web-based application
 - Click on *POST/cam*, *POST/conja*, *POST/epic*, *POST/happ*, *POST/fca* from the home page.
 - 2. Input the proper parameters from the *Example* tab.
 - 3. To create a request id click on *Try*.

REQUEST BODY* application/json	
CAM parameters	
EXAMPLE SCHEMA	
<pre>{ "analysis_duration_days": 5, "pc_method": "F0STER-1992", "primary_norad_id": 55161, "primary_object_span_m": 0.5, "screen_threshold_km": 25, "secondary_norad_ids": [25544] }</pre>	Click on 'Try' to create request ID
API Server https://fds.digantara.co/api/v1 Authentication API Key (Authorization) in header	FILL EXAMPLE CLEAR TRY

4. Note *request id* for further use.

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

<pre>curl -X POST "https://fds.digantara.co/api/v1/cam" \ -H 'accept: application/json'\ -H 'authorization: Bearer drt_OduX14GAnQb7Uo97QU3CROlfp -H 'content-type: application/json' \ -d '{"analysis_duration_days":5,"pc_method":"FOSTER-199</pre>	
Response Status: 200 Took 563 milliseconds Note down request id RESPONSE RESPONSE HEADERS	CLEAR RESPONSE
<pre>kesponse kesponse Headers { "request_id": "4c267927-d562-436c-b511-4e11d146164c" }</pre>	Сору

• Using the *curl* format (Inputs have to be updated):

You can interact with the API using **curl** commands. Here's how to use **curl** to make requests to the API, including authentication and POST requests. Base URL would be the API end-point of a particular module.

Header	Value	Description
accept	application/json	Specifies the expected response format
authorization	Bearer API_TOKEN	Authentication token (replace API_TOKEN with your actual token)
content-type	application/json	Specifies the request body format

1. For entire catalogue analysis

```
curl -X POST "<https://fds.digantara.co/api/v1/cam>" \\
-H "accept: application/json"\\
-H "authorization: Bearer API_TOKEN"\\
-H "content-type: application/json" \\
-d'{"primary_norad_id":12345,"analysis_duration_days":5,"screen_threshold_km":50
,"pc_method":"FOSTER-1992"}' \\
```

2. For specific secondary object analysis

```
curl -X POST "<https://fds.digantara.co/api/v1/cam>" \\
-H "accept: application/json"\\
-H "authorization: Bearer API_TOKEN"\\
-H "content-type: application/json" \\
-d{"primary_norad_id":12345, "analysis_duration_days":5, "screen_threshold_km":25,
```


Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

"pc_method":"FOSTER-1992","secondary_norad_ids":[11111,22222,33333]}' \\

Response

The response will contain the conjunction results including potential conjunction events, computed Pc values, and details of the closest approaches between the primary and secondary objects in form of .csv files and CCSDS conjunction data messages (CDM) in zip folder.

Response code

Code	Туре	Message	Description
200	Status	REQUEST_IN_PROGRESS or REQUEST_COMPLETE	-
400	Error	INVALID_INPUT	Check request body parameters
422	Error	VALIDATION ERROR	Contact support@digantara.co.in
500	Error	SERVER_ERROR	Contact support@digantara.co.in

Checking response

- 1. Click on GET/cam/{id}, GET/epic/{id} & GET/happ/{id} from the home page.
- 2. Input *request id* under heading of *PATH PARAMETERS*.

Fetch CAM design response			
GET /cam/{id}			
Fetches the status of a CAM job for a specific request ID.			
REQUEST			
PATH PARAMETERS		Input request id	
* id string			
Request ID			
API Server https://fds.digantara.co/api/v1 Authentication API Key (Authorization) in header	FILL EXAMPLE	CLEAR	TRY

To check the status of the request click on *Try*. To check for updates on the response status, click *Try* periodically until the status changes from "In Progress" to "Completed". Clicking too frequently may surpass the rate limit.

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

Fetch CAM design i	response	
GET /cam/{id}		
Fetches the status of a CAM job	for a specific request ID.	
REQUEST		
PATH PARAMETERS		
* id string	request_id	Click on 'Try' to check status of request ID
	Request ID	
API Server https://fds.digantara.co/ap Authentication API Key (Authorizatio		FILL EXAMPLE CLEAR TRY

4. Request-in-progress response. The duration of the run will vary depending on the module and your inputs.

5. Rate limiting measure: If requests surpass the average rate of three per second, the system identifies this as a potential denial-of-service (DoS) attempt and dynamically enforces rate-limiting measures. Additionally, it adjusts the reset interval based on the severity and persistence of the excess traffic.

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in

Response Status: 429	
Took 63 milliseconds	Rate limiting measure
RESPONSE RESPONSE HEADERS	
<pre>{ "data": null, "message": "Rate limit exceeded", "status": false }</pre>	

6. Request completed: Module output file link will appear here-

Example Response

```
{
    "status": "REQUEST_COMPLETED",
    "message": "Request completed successfully.",
    "data": {
        "cdms_zip_filepath": "https://downloadable_link_cdms_zip_filepath.com",
        "conjunction_analysis_report_csv":
    "https://downloadable_link_conjunction_analysis_report_csv.com",
     },
     "params": {
```

DIGAMTARA

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in


```
"primary_norad_id": 12345,
"analysis_duration_days": 5,
"screen_threshold_km": 50,
"pc_method": "FOSTER-1992"
}
}
```

Note: For High Accuracy Pass Prediction, there are two more output points

PASS SUMMARY

- After request generation, wait for 30-40 seconds and paste the same *request_id* in the *id* box of the *GET /happ/{id}/summary* tab.
- To check for updates on the response status, click *Try* periodically. Once the simulation is done, the *pass summary* and *pass details* outputs are ready.
- The status of the simulation will be available in the *RESPONSE* window below the same page

PASS DETAILS

- Copy the same *request_id* in the *GET /happ/{id}/summary/{pass_id}* tab
- Enter the *pass_id* from the *GET /happ/{id}/summary* tab above, the pass details of that corresponding pass can be seen in the *RESPONSE* window in *JSON* format.

Floor 9, Brigade Senate 2, Hebbal, Bengaluru, India – 560024 info@digantara.co.in | www.digantara.co.in